Zhenxiao Qi (UC Riverside), Yu Qu (UC Riverside), Heng Yin (UC Riverside)

Memory forensic tools rely on the knowledge of kernel symbols and kernel object layouts to retrieve digital evidence and artifacts from memory dumps. This knowledge is called profile. Existing solutions for profile generation are either inconvenient or inaccurate. In this paper, we propose a logic inference approach to automatically generating a profile directly from a memory dump. It leverages the invariants existing in kernel data structures across all kernel versions and configurations to precisely locate forensics-required fields in kernel objects. We have implemented a prototype named LOGICMEM and evaluated it on memory dumps collected from mainstream Linux distributions, customized Linux kernels with random configurations, and operating systems designed for Android smartphones and embedded devices. The evaluation results show that the proposed logic inference approach is well-suited for locating forensics-required fields and achieves 100% precision and recall for mainstream Linux distributions and 100% precision and 95% recall for customized kernels with random configurations. Moreover, we show that false negatives can be eliminated with improved logic rules. We also demonstrate that LOGICMEM can generate profiles when it is otherwise difficult (if not impossible) for existing approaches, and support memory forensics tasks such as rootkit detection.

View More Papers

Trust and Privacy Expectations during Perilous Times of Contact...

Habiba Farzand (University of Glasgow), Florian Mathis (University of Glasgow), Karola Marky (University of Glasgow), Mohamed Khamis (University of Glasgow)

Read More

Packet-Level Open-World App Fingerprinting on Wireless Traffic

Jianfeng Li (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Hao Zhou (The Hong Kong Polytechnic University), Xiapu Luo (The Hong Kong Polytechnic University), Ting Wang (Penn State), Yangyang Liu (The Hong Kong Polytechnic University), Xiaobo Ma (Xi'an Jiaotong University)

Read More

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More