Roland Meier (ETH Zürich), Vincent Lenders (armasuisse), Laurent Vanbever (ETH Zürich)

Many large organizations operate dedicated wide area networks (WANs) distinct from the Internet to connect their data centers and remote sites through high-throughput links. While encryption generally protects these WANs well against content eavesdropping, they remain vulnerable to traffic analysis attacks that infer visited websites, watched videos or contents of VoIP calls from analysis of the traffic volume, packet sizes or timing information. Existing techniques to obfuscate Internet traffic are not well suited for WANs as they are either highly inefficient or require modifications to the communication protocols used by end hosts.

This paper presents ditto, a traffic obfuscation system adapted to the requirements of WANs: achieving high-throughput traffic obfuscation at line rate without modifications of end hosts. ditto adds padding to packets and introduces chaff packets to make the resulting obfuscated traffic independent of production traffic with respect to packet sizes, timing and traffic volume.

We evaluate a full implementation of ditto running on programmable switches in the network data plane. Our results show that ditto runs at 100 Gbps line rate and performs with negligible performance overhead up to a realistic traffic load of 70 Gbps per WAN link.

View More Papers

DITTANY: Strength-Based Dynamic Information Flow Analysis Tool for x86...

Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More

F-PKI: Enabling Innovation and Trust Flexibility in the HTTPS...

Laurent Chuat (ETH Zurich), Cyrill Krähenbühl (ETH Zürich), Prateek Mittal (Princeton University), Adrian Perrig (ETH Zurich)

Read More

Hazard Integrated: Understanding Security Risks in App Extensions to...

Mingming Zha (Indiana University Bloomington), Jice Wang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Yuhong Nan (Sun Yat-sen University), Xiaofeng Wang (Indiana Unversity Bloomington), Yuqing Zhang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Zelin Yang (National Computer Network Intrusion Protection Center, University of Chinese Academy…

Read More