Ege Tekiner (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Recently, cryptojacking malware has become an easy way of reaching and profiting from a large number of victims. Prior works studied the cryptojacking detection systems focusing on both in-browser and host-based cryptojacking malware. However, none of these earlier works investigated different attack configurations and network settings in this context. For example, an attacker with an aggressive profit strategy may increase computational resources to the maximum utilization to benefit more in a short time, while a stealthy attacker may want to stay undetected longer time on the victim's device. The accuracy of the detection mechanism may differ for an aggressive and stealthy attacker. Not only profit strategies but also the cryptojacking malware type, the victim's device as well as various network settings where the network is fully or partially compromised may play a key role in the performance evaluation of the detection mechanisms. In addition, smart home networks with multiple IoT devices are easily exploited by the attackers, and they are equipped to mine cryptocurrency on behalf of the attacker. However, no prior works investigated the impact of cryptojacking malware on IoT devices and compromised smart home networks. In this paper, we first propose an accurate and efficient IoT cryptojacking detection mechanism based on network traffic features, which can detect both in-browser and host-based cryptojacking. Then, we focus on the cryptojacking implementation problem on new device categories (e.g., IoT) and designed several novel experiment scenarios to assess our detection mechanism to cover the current attack surface of the attackers. Particularly, we tested our mechanism in various attack configurations and network settings. For this, we used a dataset of network traces consisting of 6.4M network packets and showed that our detection algorithm can obtain accuracy as high as 99% with only one hour of training data. To the best of our knowledge, this work is the first study focusing on IoT cryptojacking and the first study analyzing various attacker behaviors and network settings in the area of cryptojacking detection.

View More Papers

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against...

Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Baojun Liu (Tsinghua University), Xiaofeng Zheng (Institute for Network Sciences and Cyberspace, Tsinghua University; QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Qiushi Yang (QiAnXin Technology Research Institute & Legendsec Information Technology (Beijing) Inc.), Haixin Duan…

Read More