Ege Tekiner (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Recently, cryptojacking malware has become an easy way of reaching and profiting from a large number of victims. Prior works studied the cryptojacking detection systems focusing on both in-browser and host-based cryptojacking malware. However, none of these earlier works investigated different attack configurations and network settings in this context. For example, an attacker with an aggressive profit strategy may increase computational resources to the maximum utilization to benefit more in a short time, while a stealthy attacker may want to stay undetected longer time on the victim's device. The accuracy of the detection mechanism may differ for an aggressive and stealthy attacker. Not only profit strategies but also the cryptojacking malware type, the victim's device as well as various network settings where the network is fully or partially compromised may play a key role in the performance evaluation of the detection mechanisms. In addition, smart home networks with multiple IoT devices are easily exploited by the attackers, and they are equipped to mine cryptocurrency on behalf of the attacker. However, no prior works investigated the impact of cryptojacking malware on IoT devices and compromised smart home networks. In this paper, we first propose an accurate and efficient IoT cryptojacking detection mechanism based on network traffic features, which can detect both in-browser and host-based cryptojacking. Then, we focus on the cryptojacking implementation problem on new device categories (e.g., IoT) and designed several novel experiment scenarios to assess our detection mechanism to cover the current attack surface of the attackers. Particularly, we tested our mechanism in various attack configurations and network settings. For this, we used a dataset of network traces consisting of 6.4M network packets and showed that our detection algorithm can obtain accuracy as high as 99% with only one hour of training data. To the best of our knowledge, this work is the first study focusing on IoT cryptojacking and the first study analyzing various attacker behaviors and network settings in the area of cryptojacking detection.

View More Papers

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

VPNInspector: Systematic Investigation of the VPN Ecosystem

Reethika Ramesh (University of Michigan), Leonid Evdokimov (Independent), Diwen Xue (University of Michigan), Roya Ensafi (University of Michigan)

Read More