Zu-Ming Jiang (Tsinghua University), Jia-Ju Bai (Tsinghua University), Kangjie Lu (University of Minnesota), Shi-Min Hu (Tsinghua University)

Fuzzing is popular for bug detection and vulnerability discovery nowadays. To adopt fuzzing for concurrency problems like data races, several recent concurrency fuzzing approaches consider concurrency information of program execution, and explore thread interleavings by affecting threads scheduling at runtime. However, these approaches are still limited in data-race detection. On the one hand, they fail to consider the execution contexts of thread interleavings, which can miss real data races in specific runtime contexts. On the other hand, they perform random thread-interleaving exploration, which frequently repeats already covered thread interleavings and misses many infrequent thread interleavings.

In this paper, we develop a novel concurrency fuzzing framework named CONZZER, to effectively explore thread interleavings and detect hard-to-find data races. The core of CONZZER is a context-sensitive and directional concurrency fuzzing approach for thread-interleaving exploration, with two new techniques. First, to ensure context sensitivity, we propose a new concurrencycoverage metric, concurrent call pair, to describe thread interleavings with runtime calling contexts. Second, to directionally explore thread interleavings, we propose an adjacency-directed mutation to generate new possible thread interleavings with already covered thread interleavings and then use a breakpoint-control method to attempt to actually cover them at runtime. With these two techniques, this concurrency fuzzing approach can effectively cover infrequent thread interleavings with concrete context information, to help discover hard-to-find data races. We have evaluated CONZZER on 8 user-level applications and 4 kernel-level filesystems, and found 95 real data races. We identify 75 of these data races to be harmful and send them to related developers, and 44 have been confirmed. We also compare CONZZER to existing fuzzing tools, and CONZZER continuously explores more thread interleavings and finds many real data races missed by these tools.

View More Papers

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More

hbACSS: How to Robustly Share Many Secrets

Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Read More

Log4shell: Redefining the Web Attack Surface

Douglas Everson (Clemson University), Long Cheng (Clemson University), and Zhenkai Zhang (Clemson University)

Read More

ROV-MI: Large-Scale, Accurate and Efficient Measurement of ROV Deployment

Wenqi Chen (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Chenxin Duan (Tsinghua University), Xia Yin (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University)

Read More