Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Coverage-guided gray-box fuzzing (CGF) is an efficient software testing technique. There are usually multiple objectives to optimize in CGF. However, existing CGF methods cannot successfully find the optimal values for multiple objectives simultaneously. In this paper, we propose a gray-box fuzzer for multi-objective optimization (MOO) called MobFuzz. We model the multi-objective optimization process as a multi-player multi-armed bandit (MPMAB). First, it adaptively selects the objective combination that contains the most appropriate objectives for the current situation. Second, our model deals with the power schedule, which adaptively allocates energy to the seeds under the chosen objective combination. In MobFuzz, we propose an evolutionary algorithm called NIC to optimize our chosen objectives simultaneously without incurring additional performance overhead. To prove the effectiveness of MobFuzz, we conduct experiments on 12 real-world programs and the MAGMA data set. Experiment results show that multi-objective optimization in MobFuzz outperforms single-objective fuzzing in the baseline fuzzers. In contrast to them, MobFuzz can select the optimal objective combination and increase the values of multiple objectives up to 107%, with at most a 55% reduction in the energy consumption. Moreover, MobFuzz has up to 6% more program coverage and finds 3x more unique bugs than the baseline fuzzers. The NIC algorithm has at least a 2x improvement with a performance overhead of approximately 3%.

View More Papers

Demo #6: Attacks on CAN Error Handling Mechanism

Khaled Serag (Purdue University), Vireshwar Kumar (IIT Delhi), Z. Berkay Celik (Purdue University), Rohit Bhatia (Purdue University), Mathias Payer (EPFL) and Dongyan Xu (Purdue University)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

GhostTalk: Interactive Attack on Smartphone Voice System Through Power...

Yuanda Wang (Michigan State University), Hanqing Guo (Michigan State University), Qiben Yan (Michigan State University)

Read More

Property Inference Attacks Against GANs

Junhao Zhou (Xi'an Jiaotong University), Yufei Chen (Xi'an Jiaotong University), Chao Shen (Xi'an Jiaotong University), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More