Nishat Koti (IISc Bangalore), Arpita Patra (IISc Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (IISc, Bangalore)

Mixing arithmetic and boolean circuits to perform privacy-preserving machine learning has become increasingly popular. Towards this, we propose a framework for the case of four parties with at most one active corruption called Tetrad.

Tetrad works over rings and supports two levels of security, fairness and robustness. The fair multiplication protocol costs 5 ring elements, improving over the state-of-the-art Trident (Chaudhari et al. NDSS'20). A key feature of Tetrad is that robustness comes for free over fair protocols. Other highlights across the two variants include (a) probabilistic truncation without overhead, (b) multi-input multiplication protocols, and (c) conversion protocols to switch between the computational domains, along with a tailor-made garbled circuit approach.

Benchmarking of Tetrad for both training and inference is conducted over deep neural networks such as LeNet and VGG16. We found that Tetrad is up to 4 times faster in ML training and up to 5 times faster in ML inference. Tetrad is also lightweight in terms of deployment cost, costing up to 6 times less than Trident.

View More Papers

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More

Fighting Fake News in Encrypted Messaging with the Fuzzy...

Linsheng Liu (George Washington University), Daniel S. Roche (United States Naval Academy), Austin Theriault (George Washington University), Arkady Yerukhimovich (George Washington University)

Read More

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More

30 Years into Scientific Binary Decompilation: What We Have...

Dr. Ruoyu (Fish) Wang, Assistant Professor at Arizona State University

Read More