Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Federated Learning (FL) allows multiple participants to train machine learning models collaboratively by keeping their datasets local while only exchanging model updates. Alas, this is not necessarily free from privacy and robustness vulnerabilities, e.g., via membership, property, and backdoor attacks. This paper investigates whether and to what extent one can use differential Privacy (DP) to protect both privacy and robustness in FL. To this end, we present a first-of-its-kind evaluation of Local and Central Differential Privacy (LDP/CDP) techniques in FL, assessing their feasibility and effectiveness.

Our experiments show that both DP variants do defend against backdoor attacks, albeit with varying levels of protection-utility trade-offs, but anyway more effectively than other robustness defenses. DP also mitigates white-box membership inference attacks in FL, and our work is the first to show it empirically. Neither LDP nor CDP, however, defend against property inference. Overall, our work provides a comprehensive, re-usable measurement methodology to quantify the trade-offs between robustness/privacy and utility in differentially private FL.

View More Papers

On Utility and Privacy in Synthetic Genomic Data

Bristena Oprisanu (UCL), Georgi Ganev (UCL & Hazy), Emiliano De Cristofaro (UCL)

Read More

Evaluating Susceptibility of VPN Implementations to DoS Attacks Using...

Fabio Streun (ETH Zurich), Joel Wanner (ETH Zurich), Adrian Perrig (ETH Zurich)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More

Analyzing and Creating Malicious URLs: A Comparative Study on...

Vincent Drury (IT-Security Research Group, RWTH Aachen University), Rene Roepke (Learning Technologies Research Group, RWTH Aachen University), Ulrik Schroeder (Learning Technologies Research Group, RWTH Aachen University), Ulrike Meyer (IT-Security Research Group, RWTH Aachen University)

Read More