Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of Technology), Jun Xu (Stevens Institute of Technology, University of Utah)

Embedded devices are ubiquitous. However, preliminary evidence shows that attack mitigations protecting our desktops/servers/phones are missing in embedded devices, posing a significant threat to embedded security. To this end, this paper presents an in-depth study on the adoption of common attack mitigations on embedded devices. Precisely, it measures the presence of standard mitigations against memory corruptions in over 10k Linux-based firmware of deployed embedded devices.

The study reveals that embedded devices largely omit both user-space and kernel-level attack mitigations. The adoption rates on embedded devices are multiple times lower than their desktop counterparts. An equally important observation is that the situation is not improving over time. Without changing the current practices, the attack mitigations will remain missing, which may become a bigger threat in the upcoming IoT era.

Throughout follow-up analyses, we further inferred a set of factors possibly contributing to the absence of attack mitigations. The exemplary ones include massive reuse of non-protected software, lateness in upgrading outdated kernels, and restrictions imposed by automated building tools. We envision these will turn into insights towards improving the adoption of attack mitigations on embedded devices in the future.

View More Papers

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Demo #12: Too Afraid to Drive: Systematic Discovery of...

Ziwen Wan (UC Irvine), Junjie Shen (UC Irvine), Jalen Chuang (UC Irvine), Xin Xia (UCLA), Joshua Garcia (UC Irvine), Jiaqi Ma (UCLA) and Qi Alfred Chen (UC Irvine)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More

ScriptChecker: To Tame Third-party Script Execution With Task Capabilities

Wu Luo (Peking University), Xuhua Ding (Singapore Management University), Pengfei Wu (School of Computing, National University of Singapore), Xiaolei Zhang (Peking University), Qingni Shen (Peking University), Zhonghai Wu (Peking University)

Read More