Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Covert channels are a method of communication that is used to exfiltrate information from computing devices and break the security policy of computer systems. Any shared resource can be potentially leveraged as a covert channel, and conventional wisdom of cyber-security believes that air-gapped computing devices, disconnected from the Internet, are highly secured. Recent studies show that advanced covert channel attacks using acoustic, thermal, and electromagnetic effects can only work under a limited proximity constraint (e.g., within 2 meters). In this work, we present SpiralSpy, a new covert channel to attack air-gapped computing devices through millimeter-wave (mmWave) sensing technologies. SpiralSpy can be stealthily launched and circumvent strongly isolated computing devices from a practical distance (up to 8 meters). Specifically, we demonstrate that ordinal cooling fans can be leveraged for covert channel attacks. A malicious software inside air-gapped computing devices can saliently encode confidential data into the fan control signals, and modulated status on fan motions can be remotely decoded by a commodity mmWave sensor. SpiralSpy can be adopted on multiple-fan systems and enable a scalable capacity for multi-channel and high-speed information transfer. We evaluate SpiralSpy with 71 computing devices with cooling fans. Experimental results demonstrate that SpiralSpy can achieve up to 6 bps that is 6-24X faster than existing covert channels on air-gapped computing devices. We evaluate the usability and robustness of SpiralSpy under different real-world scenarios. Moreover, we conduct in-depth analysis and discussion on countermeasures for SpiralSpy-based covert channel attacks to improve computer and information security.

View More Papers

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More

ProvTalk: Towards Interpretable Multi-level Provenance Analysis in Networking Functions...

Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Read More

Too Afraid to Drive: Systematic Discovery of Semantic DoS...

Ziwen Wan (University of California, Irvine), Junjie Shen (University of California, Irvine), Jalen Chuang (University of California, Irvine), Xin Xia (The University of California, Los Angeles), Joshua Garcia (University of California, Irvine), Jiaqi Ma (The University of California, Los Angeles), Qi Alfred Chen (University of California, Irvine)

Read More