Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

In the present era of ubiquitous digitization more and more services are becoming available online which is amplified by the Corona pandemic. The fast-growing mobile service market opens up new attack surfaces to the mobile service ecosystem. Hence, mobile service providers are faced with various challenges to protect their services and in particular the associated mobile apps. Defenses for apps are, however, often limited to (lightweight) application-level protection such as app hardening and monitoring and intrusion detection. Therefore, effective risk management is crucial to limit the exposure of mobile services to threats and potential damages caused by attacks.

In this paper, we present FedCRI, a solution for sharing Cyber-Risk Intelligence (CRI). At its core, FedCRI transforms mobile cyber-risks into machine learning (ML) models and leverages ML-based risk management to evaluate security risks on mobile devices. FedCRI enables fast and autonomous sharing of actionable ML-based CRI knowledge by utilizing Federated Learning (FL). FL allows collaborative training of effective risk detection models based on information contributed by different mobile service providers while preserving the privacy of the training data of the individual organizations. We extensively evaluate our approach on several real-world user databases representing 23.8 million users of security-critical mobile apps (since Android 4 and iOS 6) provided by nine different service providers in different European countries. The datasets were collected over the course of six years in the domains of financial services, payments, or insurances. Our approach can successfully extract accurate CRI models, allowing the effective identification of cybersecurity risks on mobile devices. Our evaluation shows that the federated risk detection model can achieve better than 99% accuracy in terms of F1-score in most risk classification tasks with a very low number of false positives.

View More Papers

Privacy in Urban Sensing with Instrumented Fleets, Using Air...

Ismi Abidi (IIT Delhi), Ishan Nangia (MPI-SWS), Paarijaat Aditya (Nokia Bell Labs), Rijurekha Sen (IIT Delhi)

Read More

What Storage? An Empirical Analysis of Web Storage in...

Zubair Ahmad (Università Ca’ Foscari Venezia), Samuele Casarin (Università Ca’ Foscari Venezia), and Stefano Calzavara (Università Ca’ Foscari Venezia)

Read More

COOPER: Testing the Binding Code of Scripting Languages with...

Peng Xu (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yanhao Wang (QI-ANXIN Technology Research Institute), Hong Hu (Pennsylvania State University), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences)

Read More

First, Fuzz the Mutants

Alex Groce (Northern Arizona Univerisity), Goutamkumar Kalburgi (Northern Arizona Univerisity), Claire Le Goues (Carnegie Mellon University), Kush Jain (Carnegie Mellon University), Rahul Gopinath (Saarland University)

Read More