Azadeh Tabiban (CIISE, Concordia University, Montreal, QC, Canada), Heyang Zhao (CIISE, Concordia University, Montreal, QC, Canada), Yosr Jarraya (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Makan Pourzandi (Ericsson Security Research, Ericsson Canada, Montreal, QC, Canada), Mengyuan Zhang (Department of Computing, The Hong Kong Polytechnic University, China), Lingyu Wang (CIISE, Concordia University, Montreal, QC, Canada)

Network functions virtualization (NFV) enables agile deployment of network services on top of clouds. However, as NFV involves multiple levels of abstraction representing the same components, pinpointing the root cause of security incidents can become challenging. For instance, a security incident may be detected at a different level from where its root cause operations were conducted with no obvious link between the two. Moreover, existing provenance analysis techniques may produce results that are impractically large for human analysts to interpret due to the inherent complexity of NFV. In this paper, we propose ProvTalk, a provenance analysis system that handles the unique multi-level nature of NFV and assists the analyst to identify the root cause of security incidents. Specifically, we first define a multi-level provenance model to capture the dependencies between NFV levels. Next, we improve the interpretability through three novel techniques, i.e., multi-level pruning, mining-based aggregation, and rule-based natural language translation. We implement ProvTalk on a Tacker-OpenStack NFV platform and validate its effectiveness based on real-world security incidents. We demonstrate that ProvTalk captures management API calls issued to all NFV services, and produces more interpretable results by significantly reducing the size of the provenance graphs (up to 3.6 times smaller than the existing one-level pruning scheme and two orders of magnitude via multi-level aggregation scheme). Our user study shows that ProvTalk facilitates the analysis task of real-world users by generating more interpretable results.

View More Papers

COOPER: Testing the Binding Code of Scripting Languages with...

Peng Xu (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yanhao Wang (QI-ANXIN Technology Research Institute), Hong Hu (Pennsylvania State University), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences)

Read More

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More