Ismi Abidi (IIT Delhi), Ishan Nangia (MPI-SWS), Paarijaat Aditya (Nokia Bell Labs), Rijurekha Sen (IIT Delhi)

Companies providing services like cab sharing, e-commerce logistics and, food delivery are willing to instrument their vehicles for scaling up measurements of traffic congestion, travel time, road surface quality, air quality, etc.~cite{polmeasure}. Analyzing fine-grained sensors data from such large fleets can be highly beneficial; however, this sensor information reveals the locations and the number of vehicles in the deployed fleet. This sensitive data is of high business value to rival companies in the same business domain, e.g., Uber vs. Ola, Uber vs. Lyft in cab sharing, or Amazon vs. Alibaba in the e-commerce domain. This paper provides privacy guarantees for the scenario mentioned above using Gaussian Process Regression (GPR) based interpolation, Differential Privacy (DP), and Secure two-party computations (2PC). The sensed values from instrumented vehicle fleets are made available preserving fleet and client privacy, along with client utility. Our system has efficient latency and bandwidth overheads, even for resource-constrained mobile clients. To demonstrate our end-to-end system, we build a sample Android application that gives the least polluted route alternatives given a source-destination pair in a privacy preserved manner.

View More Papers

Generating Test Suites for GPU Instruction Sets through Mutation...

Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Read More

Demo #2: Policy-based Discovery and Patching of Logic Bugs...

Hyungsub Kim (Purdue University), Muslum Ozgur Ozmen (Purdue University), Antonio Bianchi (Purdue University), Z. Berkay Celik (Purdue University) and Dongyan Xu (Purdue University)

Read More

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More