Viet Quoc Vo (The University of Adelaide), Ehsan Abbasnejad (The University of Adelaide), Damith C. Ranasinghe (University of Adelaide)

Machine learning models are critically susceptible to evasion attacks from adversarial examples. Generally, adversarial examples—modified inputs deceptively similar to the original input—are constructed under whitebox access settings by adversaries with full access to the model. However, recent attacks have shown a remarkable reduction in the number of queries to craft adversarial examples using blackbox attacks. Particularly alarming is the now, practical, ability to exploit simply the classification decision (hard-label only) from a trained model’s access interface provided by a growing number of Machine Learning as a Service (MLaaS) providers—including Google, Microsoft, IBM—and used by a plethora of applications incorporating these models. An adversary’s ability to exploit only the predicted hard-label from a model query to craft adversarial examples is distinguished as a decision-based attack.

In our study, we first deep-dive into recent state-of-the-art decision-based attacks in ICLR and S&P to highlight the costly nature of discovering low distortion adversarial examples employing approximate gradient estimation methods. We develop a robust class of query efficient attacks capable of avoiding entrapment in a local minimum and misdirection from noisy gradients seen in gradient estimation methods. The attack method we propose, RamBoAttack, exploits the notion of Randomized Block Coordinate Descent to explore the hidden classifier manifold, targeting perturbations to manipulate only localized input features to address the issues of gradient estimation methods. Importantly, the RamBoAttack is demonstrably more robust to the different sample inputs available to an adversary and/or the targeted class. Overall, for a given target class, RamBoAttack is demonstrated to be more robust at achieving a lower distortion and higher attack success rate within a given query budget. We curate our results using the large-scale high-resolution ImageNet dataset and open-source our attack, test samples and artifacts.

View More Papers

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

Read More

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

ROV-MI: Large-Scale, Accurate and Efficient Measurement of ROV Deployment

Wenqi Chen (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Chenxin Duan (Tsinghua University), Xia Yin (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University)

Read More