Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Despite significant recent progress toward making multi-party computation (MPC) practical, no existing MPC library offers complete robustness---meaning guaranteed output delivery, including in the offline phase---in a network that even has intermittent delays. Importantly, several theoretical MPC constructions already ensure robustness in this setting. We observe that the key reason for this gap between theory and practice is the absence of efficient verifiable/complete secret sharing (VSS/CSS) constructions; existing CSS protocols either require a) challenging broadcast channels in practice or b) introducing computation and communication overhead that is at least quadratic in the number of players.

This work presents hbACSS, a suite of optimal-resilience asynchronous complete secret sharing protocols that are (quasi)linear in both computation and communication overhead. Towards developing hbACSS, we develop hbPolyCommit, an efficient polynomial commitment scheme that is (quasi)linear (in the polynomial degree) in terms of computation and communication overhead without requiring a trusted setup. We implement our hbACSS protocols, extensively analyze their practicality, and observe that our protocols scale well with an increasing number of parties. In particular, we use hbACSS to generate MPC input masks: a useful primitive which had previously only been calculated nonrobustly in practice.

View More Papers

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

A Lightweight IoT Cryptojacking Detection Mechanism in Heterogeneous Smart...

Ege Tekiner (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University)

Read More

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More