Thomas Yurek (University of Illinois at Urbana-Champaign), Licheng Luo (University of Illinois at Urbana-Champaign), Jaiden Fairoze (University of California, Berkeley), Aniket Kate (Purdue University), Andrew Miller (University of Illinois at Urbana-Champaign)

Despite significant recent progress toward making multi-party computation (MPC) practical, no existing MPC library offers complete robustness---meaning guaranteed output delivery, including in the offline phase---in a network that even has intermittent delays. Importantly, several theoretical MPC constructions already ensure robustness in this setting. We observe that the key reason for this gap between theory and practice is the absence of efficient verifiable/complete secret sharing (VSS/CSS) constructions; existing CSS protocols either require a) challenging broadcast channels in practice or b) introducing computation and communication overhead that is at least quadratic in the number of players.

This work presents hbACSS, a suite of optimal-resilience asynchronous complete secret sharing protocols that are (quasi)linear in both computation and communication overhead. Towards developing hbACSS, we develop hbPolyCommit, an efficient polynomial commitment scheme that is (quasi)linear (in the polynomial degree) in terms of computation and communication overhead without requiring a trusted setup. We implement our hbACSS protocols, extensively analyze their practicality, and observe that our protocols scale well with an increasing number of parties. In particular, we use hbACSS to generate MPC input masks: a useful primitive which had previously only been calculated nonrobustly in practice.

View More Papers

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection

Zu-Ming Jiang (Tsinghua University), Jia-Ju Bai (Tsinghua University), Kangjie Lu (University of Minnesota), Shi-Min Hu (Tsinghua University)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More