Brian Johannesmeyer (VU Amsterdam), Jakob Koschel (VU Amsterdam), Kaveh Razavi (ETH Zurich), Herbert Bos (VU Amsterdam), Cristiano Giuffrida (VU Amsterdam)

Due to the high cost of serializing instructions to mitigate Spectre-like attacks on mispredicted conditional branches (Spectre-PHT), developers of critical software such as the Linux kernel selectively apply such mitigations with annotations to code paths they assume to be dangerous under speculative execution. The approach leads to incomplete protection as it applies mitigations only to easy-to-spot gadgets. Still, until now, this was sufficient, because existing gadget scanners (and kernel developers) are pattern-driven: they look for known exploit signatures and cannot detect more generic gadgets.

In this paper, we abandon pattern scanning for an approach that models the essential emph{steps} used in speculative execution attacks, allowing us to find more generic gadgets---well beyond the reach of existing scanners. In particular, we present Kasper, a speculative execution gadget scanner that uses taint analysis policies to model an attacker capable of exploiting arbitrary software/hardware vulnerabilities on a transient path to control data (e.g., through memory massaging or LVI), access secrets (e.g., through out-of-bounds or use-after-free accesses), and leak these secrets (e.g., through cache-based, MDS-based, or port contention-based covert channels).

Finally, where existing solutions target user programs, Kasper finds gadgets in the kernel, a higher-value attack target, but also more complicated to analyze. Even though the kernel is heavily hardened against transient execution attacks, Kasper finds 1379 gadgets that are not yet mitigated. We confirm our findings by demonstrating an end-to-end proof-of-concept exploit for one of the gadgets found by Kasper.

View More Papers

Progressive Scrutiny: Incremental Detection of UBI bugs in the...

Yizhuo Zhai (University of California, Riverside), Yu Hao (University of California, Riverside), Zheng Zhang (University of California, Riverside), Weiteng Chen (University of California, Riverside), Guoren Li (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Manu Sridharan (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside),…

Read More

Titanium: A Metadata-Hiding File-Sharing System with Malicious Security

Weikeng Chen (DZK/UC Berkeley), Thang Hoang (Virginia Tech), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila A. Yavuz (University of South Florida)

Read More

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More