Zhonghui Ge (Shanghai Jiao Tong University), Yi Zhang (Shanghai Jiao Tong University), Yu Long (Shanghai Jiao Tong University), Dawu Gu (Shanghai Jiao Tong University)

A leading approach to enhancing the performance and scalability of permissionless blockchains is to use the payment channel, which allows two users to perform off-chain payments with almost unlimited frequency. By linking payment channels together to form a payment channel network, users connected by a path of channels can perform off-chain payments rapidly. However, payment channels risk encountering fund depletion, which threatens the availability of both the payment channel and network. The most recent method needs a cycle-based channel rebalancing procedure, which requires a fair leader and users with rebalancing demands forming directed cycles in the network. Therefore, its large-scale applications are restricted.

In this work, we introduce Shaduf, a novel non-cycle off-chain rebalancing protocol that offers a new solution for users to shift coins between channels directly without relying on the cycle setting. Shaduf can be applied to more general rebalancing scenarios. We provide the details of Shaduf and formally prove its security under the Universal Composability framework. Our prototype demonstrates its feasibility and the experimental evaluation shows that Shaduf enhances the Lighting Network performance in payment success ratio and volume. Moreover, our protocol prominently reduces users’ deposits in channels while maintaining the same amount of payments.

View More Papers

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More

CFInsight: A Comprehensive Metric for CFI Policies

Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

WIP: Infrastructure-Aided Defense for Autonomous Driving Systems: Opportunities and...

Yunpeng Luo (UC Irvine), Ningfei Wang (UC Irvine), Bo Yu (PerceptIn), Shaoshan Liu (PerceptIn) and Qi Alfred Chen (UC Irvine)

Read More

Uncovering Cross-Context Inconsistent Access Control Enforcement in Android

Hao Zhou (The Hong Kong Polytechnic University), Haoyu Wang (Beijing University of Posts and Telecommunications), Xiapu Luo (The Hong Kong Polytechnic University), Ting Chen (University of Electronic Science and Technology of China), Yajin Zhou (Zhejiang University), Ting Wang (Pennsylvania State University)

Read More