Ren Zhang (Nervos), Dingwei Zhang (Nervos), Quake Wang (Nervos), Shichen Wu (School of Cyber Science and Technology, Shandong University), Jan Xie (Nervos), Bart Preneel (imec-COSIC, KU Leuven)

First implemented in Bitcoin, Nakamoto Consensus (NC) is the most influential consensus protocol in cryptocurrencies despite all the alternative protocols designed afterward. Nevertheless, NC is trapped by a security-performance tradeoff. While existing efforts mostly attempt to break this tradeoff via abandoning or adjusting NC's backbone protocol, we alternatively forward the relevance of the network layer. We identify and experimentally prove that the crux resides with the prolonged block propagation latency caused by not-yet-propagated transactions. We thus present a two-step mechanism to confirm only fully-propagated transactions, and therefore remove the limits upon NC's performance imposed by its security demands, realizing NC's untapped potential. Implementing this two-step mechanism, we propose NC-Max, whose (1) security is analyzed, proving that it provides stronger resistance than NC against transaction withholding attacks, and (2) performance is evaluated, showing that it exhausts the full throughput supported by the network, and shortens the transaction confirmation latency by 3.0 to 6.6 times compared to NC without compromising security. NC-Max is implemented in Nervos CKB, a public permissionless blockchain.

View More Papers

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

An In-Depth Analysis on Adoption of Attack Mitigations in...

Ruotong Yu (Stevens Institute of Technology, University of Utah), Yuchen Zhang, Shan Huang (Stevens Institute of Technology)

Read More

Demo #11: Understanding the Effects of Paint Colors on...

Shaik Sabiha (University at Buffalo), Keyan Guo (University at Buffalo), Foad Hajiaghajani (University at Buffalo), Chunming Qiao (University at Buffalo), Hongxin Hu (University at Buffalo) and Ziming Zhao (University at Buffalo)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More