Peng Wang (Indiana University Bloomington), Zilong Lin (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

A new type of underground illicit drug promotion, illicit drug business listings on local search services (e.g., local knowledge panel, map search, voice search), is increasingly being utilized by miscreants to advertise and sell controlled substances on the Internet. Miscreants exploit the problematic upstream local data brokers featuring loose control on data quality to post listings that promote illicit drug business. Such a promotion, in turn, pollutes the major downstream search providers’ knowledge bases and further reaches a large audience through web, map, and voice searches. To the best of our knowledge, little has been done so far to understand this new illicit promotion in terms of its scope, impact, and techniques, not to mention any effort to identify such illicit drug business listings on a large scale. In this paper, we report the first measurement study of the illicit drug business listings on local search services. Our findings have brought to light the vulnerable and less regulated local business listing ecosystem and the pervasiveness of such illicit activities, as well as the impact on local search audience.

View More Papers

Hazard Integrated: Understanding Security Risks in App Extensions to...

Mingming Zha (Indiana University Bloomington), Jice Wang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Yuhong Nan (Sun Yat-sen University), Xiaofeng Wang (Indiana Unversity Bloomington), Yuqing Zhang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences), Zelin Yang (National Computer Network Intrusion Protection Center, University of Chinese Academy…

Read More

Clarion: Anonymous Communication from Multiparty Shuffling Protocols

Saba Eskandarian (University of North Carolina at Chapel Hill), Dan Boneh (Stanford University)

Read More

Dissecting American Fuzzy Lop – A FuzzBench Evaluation

Andrea Fioraldi (EURECOM), Alessandro Mantovani (EURECOM), Dominik Maier (TU Berlin), Davide Balzarotti (EURECOM)

Read More

EMS: History-Driven Mutation for Coverage-based Fuzzing

Chenyang Lyu (Zhejiang University), Shouling Ji (Zhejiang University), Xuhong Zhang (Zhejiang University & Zhejiang University NGICS Platform), Hong Liang (Zhejiang University), Binbin Zhao (Georgia Institute of Technology), Kangjie Lu (University of Minnesota), Raheem Beyah (Georgia Institute of Technology)

Read More