Peng Wang (Indiana University Bloomington), Zilong Lin (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

A new type of underground illicit drug promotion, illicit drug business listings on local search services (e.g., local knowledge panel, map search, voice search), is increasingly being utilized by miscreants to advertise and sell controlled substances on the Internet. Miscreants exploit the problematic upstream local data brokers featuring loose control on data quality to post listings that promote illicit drug business. Such a promotion, in turn, pollutes the major downstream search providers’ knowledge bases and further reaches a large audience through web, map, and voice searches. To the best of our knowledge, little has been done so far to understand this new illicit promotion in terms of its scope, impact, and techniques, not to mention any effort to identify such illicit drug business listings on a large scale. In this paper, we report the first measurement study of the illicit drug business listings on local search services. Our findings have brought to light the vulnerable and less regulated local business listing ecosystem and the pervasiveness of such illicit activities, as well as the impact on local search audience.

View More Papers

Cross-Language Attacks

Samuel Mergendahl (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory), Hamed Okhravi (MIT Lincoln Laboratory)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More