Shoham Shitrit(University of Rochester) and Sreepathi Pai (University of Rochester)

Formal semantics for instruction sets can be used to validate implementations through formal verification. However, testing is often the only feasible method when checking an artifact such as a hardware processor, a simulator, or a compiler. In this work, we construct a pipeline that can be used to automatically generate a test suite for an instruction set from its executable semantics. Our method mutates the formal semantics, expressed as a C program, to introduce bugs in the semantics. Using a bounded model checker, we then check the mutated semantics to the original for equivalence. Since the mutated and original semantics are usually not equivalent, this yields counterexamples which can be used to construct a test suite. By combining a mutation testing engine with a bounded model checker, we obtain a fully automatic method for constructing test suites for a given formal semantics. We intend to instantiate this on a formal semantics of a portion of NVIDIA’s PTX instruction set for GPUs that we have developed. We will compare to our existing method of testing that uses stratified random sampling and evaluate effectiveness, cost, and feasibility.

View More Papers

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More

Hybrid Trust Multi-party Computation with Trusted Execution Environment

Pengfei Wu (School of Computing, National University of Singapore), Jianting Ning (College of Computer and Cyber Security, Fujian Normal University; Institute of Information Engineering, Chinese Academy of Sciences), Jiamin Shen (School of Computing, National University of Singapore), Hongbing Wang (School of Computing, National University of Singapore), Ee-Chien Chang (School of Computing, National University of Singapore)

Read More