Adrian Herrera (Australian National University), Mathias Payer (EPFL), Antony Hosking (Australian National University)

Coverage-guided greybox fuzzers rely on feedback derived from control-flow coverage to explore a target program and uncover bugs. This is despite control-flow feedback offering only a coarse-grained approximation of program behavior. Data flow intuitively more-accurately characterizes program behavior. Despite this advantage, fuzzers driven by data-flow coverage have received comparatively little attention, appearing mainly when heavyweight program analyses (e.g., taint analysis, symbolic execution) are used. Unfortunately, these more accurate analyses incur a high run-time penalty, impeding fuzzer throughput. Lightweight data-flow alternatives to control-flow fuzzing remain unexplored.

We present DATAFLOW, a greybox fuzzer driven by lightweight data-flow profiling. Whereas control-flow edges represent the order of operations in a program, data-flow edges capture the dependencies between operations that produce data values and the operations that consume them: indeed, there may be no control dependence between those operations. As such, data-flow coverage captures behaviors not visible as control flow and intuitively discovers more or different bugs. Moreover, we establish a framework for reasoning about data-flow coverage, allowing the computational cost of exploration to be balanced with precision.

We perform a preliminary evaluation of DATAFLOW, comparing fuzzers driven by control flow, taint analysis (both approximate and exact), and data flow. Our initial results suggest that, so far, pure coverage remains the best coverage metric for uncovering bugs in most targets we fuzzed (72 % of them). However, data-flow coverage does show promise in targets where control flow is decoupled from semantics (e.g., parsers). Further evaluation and analysis on a wider range of targets is required.

View More Papers

Characterizing the Adoption of Security.txt Files and their Applications...

William Findlay (Carleton University) and AbdelRahman Abdou (Carleton University)

Read More

Multi-Certificate Attacks against Proof-of-Elapsed-Time and Their Countermeasures

Huibo Wang (Baidu Security), Guoxing Chen (Shanghai Jiao Tong University), Yinqian Zhang (Southern University of Science and Technology), Zhiqiang Lin (Ohio State University)

Read More

FedCRI: Federated Mobile Cyber-Risk Intelligence

Hossein Fereidooni (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Felix Madlener (KOBIL)

Read More

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More