Franzisca Roesner (University of Washington)

Online advertisements are an unavoidable fact of the modern web: they are embedded in and financially support the majority of content websites. Significant prior work in the computer security and privacy community has previously studied the ecosystem of online advertising, particularly in terms of its privacy implications. What has not been substantively considered in the security community, however, is the visible, user-facing content of these advertisements. Our recent work reveals significant prevalence of a range of problematic content in these ads, including clickbait, misinformation, scams, and manipulative design patterns. In this talk, I will describe our work characterizing and measuring problematic content in the online ad ecosystem, including an investigation of ad content on misinformation sites and a study of political-themed ads on news and media websites around the time of the 2020 U.S. elections.

Speaker's Biography

Franziska (Franzi) Roesner is an Associate Professor in the Paul G. Allen School of Computer Science & Engineering at the University of Washington, where she co-directs the Security and Privacy Research Lab. Her research focuses broadly on computer security and privacy for end users of existing and emerging technologies. Her work has studied topics including online tracking and advertising, security and privacy for sensitive user groups, security and privacy in emerging augmented reality (AR) and IoT platforms, and online mis/disinformation. She is the recipient of a Consumer Reports Digital Lab Fellowship, an MIT Technology Review "Innovators Under 35" Award, an Emerging Leader Alumni Award from the University of Texas at Austin, a Google Security and Privacy Research Award, and an NSF CAREER Award. She serves on the USENIX Security and USENIX Enigma Steering Committees.

View More Papers

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu (The University of Sydney), Qiang Tang (The University of Sydney), jing xu (Institute of Software, Chinese Academy of Sciences), Zhenfeng Zhang (Institute of Software, Chinese Academy of Sciences)

Read More

SpiralSpy: Exploring a Stealthy and Practical Covert Channel to...

Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More