Zekun Cai (Penn State University), Aiping Xiong (Penn State University)

To enhance the acceptance of connected autonomous vehicles (CAVs) and facilitate designs to protect people’s privacy, it is essential to evaluate how people perceive the data collection and use inside and outside the CAVs and investigate effective ways to help them make informed privacy decisions. We conducted an online survey (N = 381) examining participants’ utility-privacy tradeoff and data-sharing decisions in different CAV scenarios. Interventions that may encourage safer data-sharing decisions were also evaluated relative to a control. Results showed that the feedback intervention was effective in enhancing participants’ knowledge of possible inferences of personal information in the CAV scenarios. Consequently, it helped participants make more conservative data-sharing decisions. We also measured participants’ prior experience with connectivity and driver-assistance technologies and obtained its influence on their privacy decisions. We discuss the implications of the results for usable privacy design for CAVs.

View More Papers

Preventing Kernel Hacks with HAKCs

Derrick McKee (Purdue University), Yianni Giannaris (MIT CSAIL), Carolina Ortega (MIT CSAIL), Howard Shrobe (MIT CSAIL), Mathias Payer (EPFL), Hamed Okhravi (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory)

Read More

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More

“I didn't click”: What users say when reporting phishing

Nikolas Pilavakis, Adam Jenkins, Nadin Kokciyan, Kami Vaniea (University of Edinburgh)

Read More