Zekun Cai (Penn State University), Aiping Xiong (Penn State University)

To enhance the acceptance of connected autonomous vehicles (CAVs) and facilitate designs to protect people’s privacy, it is essential to evaluate how people perceive the data collection and use inside and outside the CAVs and investigate effective ways to help them make informed privacy decisions. We conducted an online survey (N = 381) examining participants’ utility-privacy tradeoff and data-sharing decisions in different CAV scenarios. Interventions that may encourage safer data-sharing decisions were also evaluated relative to a control. Results showed that the feedback intervention was effective in enhancing participants’ knowledge of possible inferences of personal information in the CAV scenarios. Consequently, it helped participants make more conservative data-sharing decisions. We also measured participants’ prior experience with connectivity and driver-assistance technologies and obtained its influence on their privacy decisions. We discuss the implications of the results for usable privacy design for CAVs.

View More Papers

COOPER: Testing the Binding Code of Scripting Languages with...

Peng Xu (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yanhao Wang (QI-ANXIN Technology Research Institute), Hong Hu (Pennsylvania State University), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences)

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More

PHYjacking: Physical Input Hijacking for Zero-Permission Authorization Attacks on...

Xianbo Wang (The Chinese University of Hong Kong), Shangcheng Shi (The Chinese University of Hong Kong), Yikang Chen (The Chinese University of Hong Kong), Wing Cheong Lau (The Chinese University of Hong Kong)

Read More