Zekun Cai (Penn State University), Aiping Xiong (Penn State University)

To enhance the acceptance of connected autonomous vehicles (CAVs) and facilitate designs to protect people’s privacy, it is essential to evaluate how people perceive the data collection and use inside and outside the CAVs and investigate effective ways to help them make informed privacy decisions. We conducted an online survey (N = 381) examining participants’ utility-privacy tradeoff and data-sharing decisions in different CAV scenarios. Interventions that may encourage safer data-sharing decisions were also evaluated relative to a control. Results showed that the feedback intervention was effective in enhancing participants’ knowledge of possible inferences of personal information in the CAV scenarios. Consequently, it helped participants make more conservative data-sharing decisions. We also measured participants’ prior experience with connectivity and driver-assistance technologies and obtained its influence on their privacy decisions. We discuss the implications of the results for usable privacy design for CAVs.

View More Papers

What Makes Phishing Simulation Campaigns (Un)Acceptable? A Vignette Experiment

Jasmin Schwab (German Aerospace Center (DLR)), Alexander Nussbaum (University of the Bundeswehr Munich), Anastasia Sergeeva (University of Luxembourg), Florian Alt (University of the Bundeswehr Munich and Ludwig Maximilian University of Munich), and Verena Distler (Aalto University)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More