Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Dynamic dependence analysis monitors information flow between instructions in a program at runtime. Strength-based dynamic dependence analysis quantifies the strength of each dependence chain by a measure computed based on the values induced at the source and target of the chain. To the best of our knowledge, there is currently no tool available that implements strength-based dynamic information flow analysis for x86.

This paper presents DITTANY, tool support for strength-based dynamic dependence analysis and experimental evidence of its effectiveness on the x86 platform. It involves two main components: 1) a Pin-based profiler that identifies dynamic dependences in a binary executable and records the associated values induced at their sources and targets, and 2) an analysis tool that computes the strengths of the identified dependences using information theoretic and statistical metrics applied on their associated values. We also study the relation between dynamic dependences and measurable information flow, and the usage of zero strength flows to enhance performance.

DITTANY is a building block that can be used in different contexts. We show its usage in data value and indirect branch predictions. Future work will use it in countermeasures against transient execution attacks and in the context of approximate computing.

View More Papers

ROV-MI: Large-Scale, Accurate and Efficient Measurement of ROV Deployment

Wenqi Chen (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Chenxin Duan (Tsinghua University), Xia Yin (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University)

Read More

Demo #15: Remote Adversarial Attack on Automated Lane Centering

Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Read More

First, Fuzz the Mutants

Alex Groce (Northern Arizona Univerisity), Goutamkumar Kalburgi (Northern Arizona Univerisity), Claire Le Goues (Carnegie Mellon University), Kush Jain (Carnegie Mellon University), Rahul Gopinath (Saarland University)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More