Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Dynamic dependence analysis monitors information flow between instructions in a program at runtime. Strength-based dynamic dependence analysis quantifies the strength of each dependence chain by a measure computed based on the values induced at the source and target of the chain. To the best of our knowledge, there is currently no tool available that implements strength-based dynamic information flow analysis for x86.

This paper presents DITTANY, tool support for strength-based dynamic dependence analysis and experimental evidence of its effectiveness on the x86 platform. It involves two main components: 1) a Pin-based profiler that identifies dynamic dependences in a binary executable and records the associated values induced at their sources and targets, and 2) an analysis tool that computes the strengths of the identified dependences using information theoretic and statistical metrics applied on their associated values. We also study the relation between dynamic dependences and measurable information flow, and the usage of zero strength flows to enhance performance.

DITTANY is a building block that can be used in different contexts. We show its usage in data value and indirect branch predictions. Future work will use it in countermeasures against transient execution attacks and in the context of approximate computing.

View More Papers

Semantic-Informed Driver Fuzzing Without Both the Hardware Devices and...

Wenjia Zhao (Xi'an Jiaotong University and University of Minnesota), Kangjie Lu (University of Minnesota), Qiushi Wu (University of Minnesota), Yong Qi (Xi'an Jiaotong University)

Read More

The evolution of program analysis approaches in the era...

Alex Matrosov (CEO and Founder of Binarly Inc.)

Read More

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More

Above and Beyond: Organizational Efforts to Complement U.S. Digital...

Rock Stevens (University of Maryland), Faris Bugra Kokulu (Arizona State University), Adam Doupé (Arizona State University), Michelle L. Mazurek (University of Maryland)

Read More