Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

The complexity and functionality of malware is ever-increasing. Obfuscation is used to hide the malicious intent from virus scanners and increase the time it takes to reverse engineer the binary. One way to minimize this effort is function clone detection. Detecting whether a function is already known, or similar to an existing function, can reduce analysis effort. Outside of malware, the same function clone detection mechanism can be used to find vulnerable versions of functions in binaries, making it a powerful technique.

This work introduces a slim approach for the identification of obfuscated function clones, called OFCI, building on recent advances in machine learning based function clone detection. To tackle the issue of obfuscation, OFCI analyzes the effect of known function calls on function similarity. Furthermore, we investigate function similarity classification on code obfuscated through virtualization by applying function clone detection on execution traces. While not working adequately, it nevertheless provides insight into potential future directions.

Using the ALBERT transformer OFCI can achieve an 83% model size reduction in comparison to state-of-the-art approaches, while only causing an average 7% decrease in the ROC-AUC scores of function pair similarity classification. However, the reduction in model size comes at the cost of precision for function clone search. We discuss the reasons for this as well as other pitfalls of building function similarity detection tooling.

View More Papers

How Different Tokenization Algorithms Impact LLMs and Transformer Models...

Ahmed Mostafa, Raisul Arefin Nahid, Samuel Mulder (Auburn University)

Read More

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More

Accurate Compiler and Optimization Independent Function Identification Using Program...

Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Read More

Problematic Content in Online Ads

Franzisca Roesner (University of Washington)

Read More