Iman Hosseini, Brendan Dolan-Gavitt (NYU)

The problem of reversing the compilation process, decompilation, is an important tool in reverse engineering of computer software. Recently, researchers have proposed using techniques from neural machine translation to automate the process in decompilation. Although such techniques hold the promise of targeting a wider range of source and assembly languages, to date they have primarily targeted C code. In this paper we argue that existing neural decompilers have achieved higher accuracy at the cost of requiring language-specific domain knowledge such as tokenizers and parsers to build an abstract syntax tree (AST) for the source language, which increases the overhead of supporting new languages. We explore a different tradeoff that, to the extent possible, treats the assembly and source languages as plain text, and show that this allows us to build a decompiler that is easily retargetable to new languages. We evaluate our prototype decompiler, Beyond The C (BTC), on Go, Fortran, OCaml, and C, and examine the impact of parameters such as tokenization and training data selection on the quality of decompilation, finding that it achieves comparable decompilation results to prior work in neural decompilation with significantly less domain knowledge. We will release our training data, trained decompilation models, and code to help encourage future research into language-agnostic decompilation.

View More Papers

All things Binary

Dr. Sergey Bratus, DARPA PI and Research Associate Professor at Dartmouth College

Read More

Symbolic Path Tracing to Find Android Permission-Use Triggers

Kristopher Micinski (Haverford College), Thomas Gilray (University of Alabama, Birmingham), Daniel Votipka (University of Maryland), Michelle L. Mazurek (University of Maryland), Jeffrey S. Foster (Tufts University)

Read More

FANDEMIC: Firmware Attack Construction and Deployment on Power Management...

Ryan Tsang (University of California, Davis), Doreen Joseph (University of California, Davis), Qiushi Wu (University of California, Davis), Soheil Salehi (University of California, Davis), Nadir Carreon (University of Arizona), Prasant Mohapatra (University of California, Davis), Houman Homayoun (University of California, Davis)

Read More