Jim Alves-Foss, Varsha Venugopal (University of Idaho)

The effectiveness of binary analysis tools and techniques is often measured with respect to how well they map to a ground truth. We have found that not all ground truths are created equal. This paper challenges the binary analysis community to take a long look at the concept of ground truth, to ensure that we are in agreement with definition(s) of ground truth, so that we can be confident in the evaluation of tools and techniques. This becomes even more important as we move to trained machine learning models, which are only as useful as the validity of the ground truth in the training.

View More Papers

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

SpiralSpy: Exploring a Stealthy and Practical Covert Channel to...

Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Read More

Multi-Certificate Attacks against Proof-of-Elapsed-Time and Their Countermeasures

Huibo Wang (Baidu Security), Guoxing Chen (Shanghai Jiao Tong University), Yinqian Zhang (Southern University of Science and Technology), Zhiqiang Lin (Ohio State University)

Read More