Zhisheng Hu (Baidu), Shengjian Guo (Baidu) and Kang Li (Baidu)

In this demo, we disclose a potential bug in the Tesla Full Self-Driving (FSD) software. A vulnerable FSD vehicle can be deterministically tricked to run a red light. Attackers can cause a victim vehicle to behave in such ways without tampering or interfering with any sensors or physically accessing the vehicle. We infer that such behavior is caused by Tesla FSD’s decision system failing to take latest perception signals once it enters a specific mode. We call such problematic behavior Pringles Syndrome. Our study on multiple other autonomous driving implementations shows that this failed state update is a common failure pattern that specially needs attentions in autonomous driving software tests and developments.

View More Papers

Interpretable Federated Transformer Log Learning for Cloud Threat Forensics

Gonzalo De La Torre Parra (University of the Incarnate Word, TX, USA), Luis Selvera (Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA), Joseph Khoury (The Cyber Center For Security and Analytics, University of Texas at San Antonio, TX, USA), Hector Irizarry (Raytheon, USA), Elias Bou-Harb (The Cyber Center For…

Read More

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More

Transparency Dictionaries with Succinct Proofs of Correct Operation

Ioanna Tzialla (New York University), Abhiram Kothapalli (Carnegie Mellon University), Bryan Parno (Carnegie Mellon University), Srinath Setty (Microsoft Research)

Read More

An In-Depth Analysis on Adoption of Attack Mitigations in...

Ruotong Yu (Stevens Institute of Technology, University of Utah), Yuchen Zhang, Shan Huang (Stevens Institute of Technology)

Read More