Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

The Controller Area Network (CAN) bus standard is the most common in-vehicle network that provides communication between Electronic Control Units (ECUs). CAN messages lack authentication and data integrity protection mechanisms and hence are vulnerable to attacks, such as impersonation and data injection, at the digital level. The physical layer of the bus allows for a one-way change of a given bit to accommodate prioritization; viz. a recessive bit (1) may be changed to a dominant one (0). In this paper, we propose a physical-layer data manipulation attack wherein multiple compromised ECUs collude to cause 0→1 (i.e., dominant to recessive) bit-flips, allowing for arbitrary bit-flips in transmitted messages. The attack is carried out by inducing transient voltages in the CAN bus that are heightened due to the parasitic reactance of the bus and non-ideal properties of the line drivers. Simulation results indicate that, with more than eight compromised ECUs, an attacker can induce a sufficient voltage drop to cause dominant bits to be flipped to recessive ones.

View More Papers

EMS: History-Driven Mutation for Coverage-based Fuzzing

Chenyang Lyu (Zhejiang University), Shouling Ji (Zhejiang University), Xuhong Zhang (Zhejiang University & Zhejiang University NGICS Platform), Hong Liang (Zhejiang University), Binbin Zhao (Georgia Institute of Technology), Kangjie Lu (University of Minnesota), Raheem Beyah (Georgia Institute of Technology)

Read More

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More

SpiralSpy: Exploring a Stealthy and Practical Covert Channel to...

Zhengxiong Li (University at Buffalo, SUNY), Baicheng Chen (University at Buffalo), Xingyu Chen (University at Buffalo), Huining Li (SUNY University at Buffalo), Chenhan Xu (University at Buffalo, SUNY), Feng Lin (Zhejiang University), Chris Xiaoxuan Lu (University of Edinburgh), Kui Ren (Zhejiang University), Wenyao Xu (SUNY Buffalo)

Read More