Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

The Controller Area Network (CAN) bus standard is the most common in-vehicle network that provides communication between Electronic Control Units (ECUs). CAN messages lack authentication and data integrity protection mechanisms and hence are vulnerable to attacks, such as impersonation and data injection, at the digital level. The physical layer of the bus allows for a one-way change of a given bit to accommodate prioritization; viz. a recessive bit (1) may be changed to a dominant one (0). In this paper, we propose a physical-layer data manipulation attack wherein multiple compromised ECUs collude to cause 0→1 (i.e., dominant to recessive) bit-flips, allowing for arbitrary bit-flips in transmitted messages. The attack is carried out by inducing transient voltages in the CAN bus that are heightened due to the parasitic reactance of the bus and non-ideal properties of the line drivers. Simulation results indicate that, with more than eight compromised ECUs, an attacker can induce a sufficient voltage drop to cause dominant bits to be flipped to recessive ones.

View More Papers

VPNInspector: Systematic Investigation of the VPN Ecosystem

Reethika Ramesh (University of Michigan), Leonid Evdokimov (Independent), Diwen Xue (University of Michigan), Roya Ensafi (University of Michigan)

Read More

Demystifying Local Business Search Poisoning for Illicit Drug Promotion

Peng Wang (Indiana University Bloomington), Zilong Lin (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More

MIRROR: Model Inversion for Deep Learning Network with High...

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University), Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More

Demo #10: Security of Deep Learning based Automated Lane...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More