Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

With emerging vision-based autonomous driving (AD) systems, it becomes increasingly important to have datasets to evaluate their correct operation and identify potential security flaws. However, when collecting a large amount of data, either human experts manually label potentially hundreds of thousands of image frames or systems use machine learning algorithms to label the data, with the hope that the accuracy is good enough for the application. This can become especially problematic when tracking the context information, such as the location and velocity of surrounding objects, useful to evaluate the correctness and improve stability and robustness of the AD systems.

View More Papers

What Storage? An Empirical Analysis of Web Storage in...

Zubair Ahmad (Università Ca’ Foscari Venezia), Samuele Casarin (Università Ca’ Foscari Venezia), and Stefano Calzavara (Università Ca’ Foscari Venezia)

Read More

Trusted Verification of Over-the-Air (OTA) Secure Software Updates on...

Anway Mukherjee, Ryan Gerdes, and Tam Chantem (Virginia Tech)

Read More

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

Trust and Privacy Expectations during Perilous Times of Contact...

Habiba Farzand (University of Glasgow), Florian Mathis (University of Glasgow), Karola Marky (University of Glasgow), Mohamed Khamis (University of Glasgow)

Read More