Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Cross-Language Attacks

Samuel Mergendahl (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory), Hamed Okhravi (MIT Lincoln Laboratory)

Read More

ditto: WAN Traffic Obfuscation at Line Rate

Roland Meier (ETH Zürich), Vincent Lenders (armasuisse), Laurent Vanbever (ETH Zürich)

Read More

Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi (University of Southern California/Information Sciences Institute) and John Heidemann (University of Southern California/Information Sciences Institute)

Read More