Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Euler: Detecting Network Lateral Movement via Scalable Temporal Graph...

Isaiah J. King (The George Washington University), H. Howie Huang (The George Washington University)

Read More

Demo #5: Securing Heavy Vehicle Diagnostics

Jeremy Daily, David Nnaji, and Ben Ettlinger (Colorado State University)

Read More

Physical Layer Data Manipulation Attacks on the CAN Bus

Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

Read More

Demo #9: Dynamic Time Warping as a Tool for...

Mars Rayno (Colorado State University) and Jeremy Daily (Colorado State University)

Read More