Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Context-Sensitive and Directional Concurrency Fuzzing for Data-Race Detection

Zu-Ming Jiang (Tsinghua University), Jia-Ju Bai (Tsinghua University), Kangjie Lu (University of Minnesota), Shi-Min Hu (Tsinghua University)

Read More

Phishing awareness and education – When to best remind?

Benjamin Maximilian Berens (SECUSO, Karlsruhe Institute of Technology), Katerina Dimitrova, Mattia Mossano (SECUSO, Karlsruhe Institute of Technology), Melanie Volkamer (SECUSO, Karlsruhe Institute of Technology)

Read More

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

Impact Evaluation of Falsified Data Attacks on Connected Vehicle...

Shihong Huang (University of Michigan, Ann Arbor), Yiheng Feng (Purdue University), Wai Wong (University of Michigan, Ann Arbor), Qi Alfred Chen (UC Irvine), Z. Morley Mao and Henry X. Liu (University of Michigan, Ann Arbor) Best Paper Award Runner-up ($200 cash prize)!

Read More