Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Probe the Proto: Measuring Client-Side Prototype Pollution Vulnerabilities of...

Zifeng Kang (Johns Hopkins University), Song Li (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University)

Read More

Problematic Content in Online Ads

Franzisca Roesner (University of Washington)

Read More

DeepSight: Mitigating Backdoor Attacks in Federated Learning Through Deep...

Phillip Rieger (Technical University of Darmstadt), Thien Duc Nguyen (Technical University of Darmstadt), Markus Miettinen (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

ROV-MI: Large-Scale, Accurate and Efficient Measurement of ROV Deployment

Wenqi Chen (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Chenxin Duan (Tsinghua University), Xia Yin (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University)

Read More