Yulong Cao (University of Michigan), Yanan Guo (University of Pittsburgh), Takami Sato (UC Irvine), Qi Alfred Chen (UC Irvine), Z. Morley Mao (University of Michigan) and Yueqiang Cheng (NIO)

Advanced driver-assistance systems (ADAS) are widely used by modern vehicle manufacturers to automate, adapt and enhance vehicle technology for safety and better driving. In this work, we design a practical attack against automated lane centering (ALC), a crucial functionality of ADAS, with remote adversarial patches. We identify that the back of a vehicle is an effective attack vector and improve the attack robustness by considering various input frames. The demo includes videos that show our attack can divert victim vehicle out of lane on a representative ADAS, Openpilot, in a simulator.

View More Papers

Privacy in Urban Sensing with Instrumented Fleets, Using Air...

Ismi Abidi (IIT Delhi), Ishan Nangia (MPI-SWS), Paarijaat Aditya (Nokia Bell Labs), Rijurekha Sen (IIT Delhi)

Read More

The Inconvenient Truths of Ground Truth for Binary Analysis

Jim Alves-Foss, Varsha Venugopal (University of Idaho)

Read More

Remote Memory-Deduplication Attacks

Martin Schwarzl (Graz University of Technology), Erik Kraft (Graz University of Technology), Moritz Lipp (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More