Mohit Kumar Jangid (Ohio State University) and Zhiqiang Lin (Ohio State University)

Being safer, cleaner, and more efficient, connected and autonomous vehicles (CAVs) are expected to be the dominant vehicles of future transportation systems. However, there are enormous security and privacy challenges while also considering the efficiency and and scalability. One key challenge is how to efficiently authenticate a vehicle in the ad-hoc CAV network and ensure its tamper-resistance, accountability, and non-repudiation. In this paper, we present the design and implementation of Vehicle-to-Vehicle (V2V) protocol by leveraging trusted execution environment (TEE), and show how this TEE-based protocol achieves the objective of authentication, privacy, accountability and revocation as well as the scalability and efficiency. We hope t hat our TEE-based V2V protocol can inspire further research into CAV security and privacy, particularly how to leverage TEE to solve some of the hard problems and make CAV closer to practice.

View More Papers

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More

VPNInspector: Systematic Investigation of the VPN Ecosystem

Reethika Ramesh (University of Michigan), Leonid Evdokimov (Independent), Diwen Xue (University of Michigan), Roya Ensafi (University of Michigan)

Read More

(Short) WIP: Deployability Improvement, Stealthiness User Study, and Safety...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More