Jared Chandler (Tufts University)

Reverse engineering message formats from static network traces is a difficult and time consuming security task, critical for a variety of purposes: bug-finding via fuzz testing, automatic exploit generation, understanding the communications of hostile systems, and recovering specifications that are proprietary or have been lost. In this talk we describe our experiences evaluating BinaryInferno, a tool for automatically reverse engineering binary message formats from network traces. We discuss considerations for selecting protocols to evaluate, determining message format ground truth, and assembling representative datasets. Two issues we examine are the availability of real-world captures for malware protocols, and the need to validate that individual protocol messages actually conform to their ground truth specifications. We detail the engineering aspects of comparing BinaryInferno against related tools, the issues which arose, and how we address them. We examine different evaluation metrics and their tradeoffs as related to uncovering unknown message formats. We discuss how we handled the different representations of message format produced by each related tool. Finally, we conclude with a set of recommendations for future experiments involving protocol reverse engineering.

Speaker’s Biography

Jared Chandler is a PhD candidate studying Computer Science at Tufts University. His research focuses on computer security with an emphasis on automatic methods to reverse engineer unknown binary protocols, human computer interaction, and cyber deception.

View More Papers

ReScan: A Middleware Framework for Realistic and Robust Black-box...

Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder...

Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Read More

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More