Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Users face various privacy risks in smart homes, yet there are limited ways for them to learn about the details of such risks, such as the data practices of smart home devices and their data flow. In this paper, we present Privacy Plumber, a system that enables a user to inspect and explore the privacy “leaks” in their home using an augmented reality tool. Privacy Plumber allows the user to learn and understand the volume of data leaving the home and how that data may affect a user’s privacy— in the same physical context as the devices in question, because we visualize the privacy leaks with augmented reality. Privacy Plumber uses ARP spoofing to gather aggregate network traffic information and presents it through an overlay on top of the device in an smartphone app. The increased transparency aims to help the user make privacy decisions and mend potential privacy leaks, such as instruct Privacy Plumber on what devices to block, on what schedule (i.e., turn off Alexa when sleeping), etc. Our initial user study with six participants demonstrates participants’ increased awareness of privacy leaks in smart devices, which further contributes to their privacy decisions (e.g., which devices to block).

View More Papers

Stop to Unlock: Improving the Security of Android Unlock...

Alexander Suchan (SBA Research); Emanuel von Zezschwitz (Usable Security Methods Group, University of Bonn, Bonn, Germany); Katharina Krombholz (CISPA Helmholtz Center for Information Security)

Read More

Automatic Retrieval of Privacy Factors from IoMT Policies: ML...

Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Read More

Let Me Unwind That For You: Exceptions to Backward-Edge...

Victor Duta (Vrije Universiteit Amsterdam), Fabian Freyer (University of California San Diego), Fabio Pagani (University of California, Santa Barbara), Marius Muench (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

Partitioning Ethereum without Eclipsing It

Hwanjo Heo (ETRI), Seungwon Woo (ETRI/KAIST), Taeung Yoon (KAIST), Min Suk Kang (KAIST), Seungwon Shin (KAIST)

Read More