Yasmeen Abdrabou (University of the Bundeswehr Munich), Elisaveta Karypidou (LMU Munich), Florian Alt (University of the Bundeswehr Munich), Mariam Hassib (University of the Bundeswehr Munich)

We propose an approach to identify users’ exposure to fake news from users’ gaze and mouse movement behavior. Our approach is meant as an enabler for interventions that make users aware of engaging with fake news while not being consciously aware of this. Our work is motivated by the rapid spread of fake news on the web (in particular, social media) and the difficulty and effort required to identify fake content, either technically or by means of a human fact checker. To this end, we set out with conducting a remote online study (N = 54) in which participants were exposed to real and fake social media posts while their mouse and gaze movements were recorded. We identify the most predictive gaze and mouse movement features and show that fake news can be predicted with 68.4% accuracy from users’ gaze and mouse movement behavior. Our work is complemented by discussing the implications of using behavioral features for mitigating the spread of fake news on social media.

View More Papers

He-HTLC: Revisiting Incentives in HTLC

Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

VPN Awareness and Misconceptions: A Comparative Study in Canadian...

Lachlan Moore, Tatsuya Mori (Waseda University, NICT)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More