Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Patient-generated health data is growing at an unparalleled rate due to advancing technologies (e.g., the Internet of Medical Things, 5G, artificial intelligence) and increased consumer transactions. The influx of data has offered life-altering solutions. Consequently, the growth has created significant privacy challenges. A central theme to mitigating risks is promoting transparency and notifying stakeholders of data practices through privacy policies. However, natural language privacy policies have several limitations, such as being difficult to understand (by the user), lengthy, and having conflicting requirements. Yet they remain the de facto standard to inform users of privacy practices and how organizations follow privacy regulations. We developed an automated process to evaluate the appropriateness of combining machine learning and custom named entity recognition techniques to extract IoMT-relevant privacy factors in the privacy policies of IoMT devices. We employed machine learning and the natural language processing technique of named entity recognition to automatically analyze a corpus of policies and specifications to extract privacy-related information for the IoMT device. Based on the natural language analysis of policies, we provide fine-grained annotations that can help reduce the manual and tedious process of policy analysis and aid privacy engineers and policy makers in developing suitable privacy policies.

View More Papers

Vision: Towards Fully Shoulder-Surfing Resistant and Usable Authentication for...

Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Read More

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More

BlockScope: Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain...

Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Read More