Md Hasan Shahriar, Wenjing Lou, Y. Thomas Hou (Virginia Polytechnic Institute and State University)

ZOOX Best Paper Award Runner-Up!

A controller area network (CAN) connects dozens of electronic control units (ECUs), ensuring reliable and efficient data transmission. Because of the lack of security features of CAN protocol, in-vehicle networks are susceptible to a wide spectrum of threats, from simple injections at high frequencies to sophisticated masquerade attacks that target individual sensor values (signals). Hence, advanced analysis of the multidimensional time-series data is needed to learn the complex patterns of individual signals and their mutual dependencies. Although deep learning (DL)-based intrusion detection systems (IDS) have shown potential in such domain, they tend to suffer from poor generalization as they need optimization at every component. To detect such advanced CAN attacks, we propose CANtropy, a manual feature engineering-based lightweight CAN IDS. For each signal, CANtropy explores a comprehensive set of features from both temporal and statistical domains and selects only the effective subset of features in the detection pipeline to ensure scalability. Later, CANtropy uses a lightweight unsupervised anomaly detection model based on principal component analysis, to learn the mutual dependencies of the features and detect abnormal patterns in the sequence of CAN messages. The evaluation results on the advanced SynCAN dataset show that CANtropy provides a comprehensive defense against diverse types of cyberattacks with an average AUROC score of 0.992, and outperforms the existing DL-based baselines.

View More Papers

The Walls Have Ears: Gauging Security Awareness in a...

Gokul Jayakrishnan, Vijayanand Banahatti, Sachin Lodha (TCS Research Tata Consultancy Services Ltd.)

Read More

Cryptographic Oracle-based Conditional Payments

Varun Madathil (North Carolina State University), Sri Aravinda Krishnan Thyagarajan (NTT Research), Dimitrios Vasilopoulos (IMDEA Software Institute), Lloyd Fournier (None), Giulio Malavolta (Max Planck Institute for Security and Privacy), Pedro Moreno-Sanchez (IMDEA Software Institute)

Read More

MyTEE: Own the Trusted Execution Environment on Embedded Devices

Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

Read More

On the Anonymity of Peer-To-Peer Network Anonymity Schemes Used...

Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Read More