Jack Sturgess, Sebastian Köhler, Simon Birnbach, Ivan Martinovic (University of Oxford)

Electric vehicle charging sessions can be authorised in different ways, ranging from smartphone applications to smart cards with unique identifiers that link the electric vehicle to the charging station. However, these methods do not provide strong authentication guarantees. In this paper, we propose a novel second factor authentication scheme to tackle this problem. We show that by using inertial sensor data collected from IMU sensors either embedded in the handle of the charging cable or on a separate smartwatch, users can be authenticated implicitly by behavioural biometrics as they unhook the cable from the charging station and plug it into their car at the start of a charging session. To validate the system, we conducted a user study (n=20) to collect data and we developed a suite of authentication models for which we achieve EERs of 0.06.

View More Papers

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

Enhanced Vehicular Roll-Jam Attack using a Known Noise Source

Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

Read More

Location Spoofing Attacks on Autonomous Fleets

Jinghan Yang, Andew Estornell, Yevgeniy Vorobeychik (Washington University in St. Louis)

Read More

Real Threshold ECDSA

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Hoover H. F. Yin (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More