Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Modern vehicles are increasingly connected systems that expose a wide variety of security risks to their users. Message authentication prevents entire classes of these attacks, such as message spoofing and electronic control unit impersonation, but current in-vehicle networks do not include message authentication features. Latency and throughput requirements for vehicle traffic can be very stringent (100 Mbps in cases), making it difficult to implement message authentication with cryptography due to the overheads required. This work investigates the feasibility of implementing cryptography-based message authentication in Automotive Ethernet networks that is fast enough to comply with these performance requirements. We find that it is infeasible to include Message Authentication Codes in all traffic without costly hardware accelerators and propose an alternate approach for future research to minimize the cost of authenticated traffic.

View More Papers

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More

BARS: Local Robustness Certification for Deep Learning based Traffic...

Kai Wang (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Wenqi Chen (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Read More

Tactics, Threats & Targets: Modeling Disinformation and its Mitigation

Shujaat Mirza (New York University), Labeeba Begum (New York University Abu Dhabi), Liang Niu (New York University), Sarah Pardo (New York University Abu Dhabi), Azza Abouzied (New York University Abu Dhabi), Paolo Papotti (EURECOM), Christina Pöpper (New York University Abu Dhabi)

Read More