Nicolas Quero (Expleo France), Aymen Boudguiga (CEA LIST), Renaud Sirdey (CEA LIST), Nadir Karam (Expleo France)

Platooning is an upcoming technology which aims at improving transportation by allowing a leading human-driven vehicle to automatically guide multiple trucks to their respective destinations, saving driver time, improving road efficiency and reducing gas consumption. However, efficient linkage of trucks to platoons requires the centralization and processing of business-critical data which truck operators are not willing to disclose. In order to address these issues, we investigate how homomorphic encryption can be used at the core of a protocol for privately linking a vehicle to a nearby platoon without disclosing its location and destination. Furthermore, we provide experimental results illustrating that such protocols achieve acceptable performances and latencies at practical platoon database scales (serving around 500 simultaneous clients on a single platooning server processor core with sub second latency over databases of up to ≈60000 platoons scattered among over 250 destinations).

View More Papers

Death By A Thousand COTS: Disrupting Satellite Communications using...

Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford) Presenter: Frederick Rawlins

Read More

GPS Spoofing Attack Detection on Intersection Movement Assist using...

Jun Ying (Purdue University), Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan)

Read More

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More

Faster Secure Comparisons with Offline Phase for Efficient Private...

Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

Read More