Wei Sun, Kannan Srinivsan (The Ohio State University)

ZOOX Best Paper Award Runner-Up!

Being followed by other vehicles during driving is scary and causes privacy leakage (e.g., location), which can make our blood run cold and even make run moves. Moreover, deliberately following the other vehicles may cause significant traffic accidents. The following vehicle needs to maintain an appropriate separation from the following vehicle without getting lost and uncovered. To put the driver’s privacy and safety first, it is essential to discriminate between stalking vehicles (i.e., following abnormal vehicles) and normal following vehicles. However, there are no infrastructure-free and ubiquitous in-vehicle systems that can achieve abnormal following vehicle detection while driving.

To this end, we propose P2D2, a Privacy-Preserving Defensive Driving system that can detect the abnormal following vehicles through the sensor fusion. Specifically, we will use the camera to extract each following vehicle’s following time, and use the IMU sensors (e.g., Gyroscope ) to extract our vehicle’s critical driving behavior (e.g., making a left or right turn). We harness the space diversity of IMU sensing data to remove the artifacts of road surface conditions (e.g., bumps on the road surface) on critical driving behavior (CDB) detection. Then, we leverage the machine learning-based anomaly detection algorithm to detect the abnormal following vehicles based on the following vehicle’s following time and our vehicle’s critical driving behavior within the following time. Our experimental results show the F-1 score of 97.45% for the abnormal following vehicle detection in different driving scenarios during our daily traffic commute.

View More Papers

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Analysing Adversarial Threats to Rule-Based Local-Planning Algorithms for Autonomous...

Andrew Roberts (Tallinn University of Technology), Mohsen Malayjerdi (Tallinn University of Technology), Mauro Bellone (Tallinn University of Technology), Olaf Maennel (The University of Adelaide), Ehsan Malayjerdi (Tallinn University of Technology)

Read More

Cybersecurity of COSPAS-SARSAT and EPIRB: threat and attacker models,...

Andrei Costin, Hannu Turtiainen, Syed Khandkher and Timo Hamalainen (Faculty of Information Technology, University of Jyvaskyla, Finland) Presenter: Andrei Costin

Read More