Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

ZOOX Best Paper Award Winner ($500 cash prize)!

Driving apps, such as navigation, fuel-price, and road services, have been deployed and used widely. The car-related nature of these services may motivate them to infer the type of their users’ vehicles. We first apply systematic analytics on real-world apps to show that the vehicle-type — seemingly unharmful — information may have serious privacy implications. Next, we demonstrate that attackers can harvest the features of these mobile apps to infer the car-type information in a stealthy way. Specifically, we explore the use of zero-permission mobile motion sensors to extract spectral features for differentiating the engines and body types of vehicles. Based on our experimental results of 17 different cars, we have achieved 82+% and 85+% overall accuracy in identifying three major engine types and four popular body types, respectively.

View More Papers

Power to the Data Defenders: Human-Centered Disclosure Risk Calibration...

Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

Read More

Towards Privacy-Preserving Platooning Services by means of Homomorphic Encryption

Nicolas Quero (Expleo France), Aymen Boudguiga (CEA LIST), Renaud Sirdey (CEA LIST), Nadir Karam (Expleo France)

Read More

No Grammar, No Problem: Towards Fuzzing the Linux Kernel...

Alexander Bulekov (Boston University), Bandan Das (Red Hat), Stefan Hajnoczi (Red Hat), Manuel Egele (Boston University)

Read More

Double and Nothing: Understanding and Detecting Cryptocurrency Giveaway Scams

Xigao Li (Stony Brook University), Anurag Yepuri (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More