Mahdi Akil (Karlstad University), Leonardo Martucci (Karlstad University), Jaap-Henk Hoepman (Radboud University)

In vehicular ad hoc networks (VANETs), vehicles exchange messages to improve traffic and passengers’ safety. In VANETs, (passive) adversaries can track vehicles (and their drivers) by analyzing the data exchanged in the network. The use of privacy-enhancing technologies can prevent vehicle tracking but solutions so far proposed either require an intermittent connection to a fixed infrastructure or allow vehicles to generate concurrent pseudonyms which could lead to identity-based (Sybil) attacks. In this paper, we propose an anonymous authentication scheme that does not require a connection to a fixed infrastructure during operation and is not vulnerable to Sybil attacks. Our scheme is built on attribute-based credentials and short lived pseudonyms. In it, vehicles interact with a central authority only once, for registering themselves, and then generate their own pseudonyms without interacting with other devices, or relying on a central authority or a trusted third party. The pseudonyms are periodically refreshed, following system wide epochs.

View More Papers

SynthDB: Synthesizing Database via Program Analysis for Security Testing...

An Chen (University of Georgia), Jiho Lee (University of Virginia), Basanta Chaulagain (University of Georgia), Yonghwi Kwon (University of Virginia), Kyu Hyung Lee (University of Georgia)

Read More

WIP: Adversarial Retroreflective Patches: A Novel Stealthy Attack on...

Go Tsuruoka (Waseda University), Takami Sato, Qi Alfred Chen (University of California, Irvine), Kazuki Nomoto, Ryunosuke Kobayashi, Yuna Tanaka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

Breaking and Fixing Virtual Channels: Domino Attack and Donner

Lukas Aumayr (TU Wien), Pedro Moreno-Sanchez (IMDEA Software Institute), Aniket Kate (Purdue University / Supra), Matteo Maffei (Christian Doppler Laboratory Blockchain Technologies for the Internet of Things / TU Wien)

Read More

BinaryInferno: A Semantic-Driven Approach to Field Inference for Binary...

Jared Chandler (Tufts University), Adam Wick (Fastly), Kathleen Fisher (DARPA)

Read More