Jun Ying (Purdue University), Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan)

Intersection movement assist (IMA) is a connected vehicle (CV) application to improve vehicle safety. GPS spoofing attack is one major threat to the IMA application since inaccurate localization results may generate fake warnings that increase rear-end crashes, or cancel real warnings that may lead to angle or swipe crashes. In this work, we first develop a GPS spoofing attack model to trigger the IMA warning of entry vehicles at a roundabout driving scenario. The attack model can generate realistic trajectories while achieving the attack goal. To defend against such attacks, we further design a one-class classifier to distinguish the normal vehicle trajectories from the trajectories under attack. The proposed model is validated with a real-world data set collected from Ann Arbor, Michigan. Results show that although the attack model triggers the IMA warning in a short time (i.e., in a few seconds), the detection model can still identify the abnormal trajectories before the attack succeeds with low false positive and false negative rates.

View More Papers

DiffCSP: Finding Browser Bugs in Content Security Policy Enforcement...

Seongil Wi (KAIST), Trung Tin Nguyen (CISPA Helmholtz Center for Information Security, Saarland University), Jihwan Kim (KAIST), Ben Stock (CISPA Helmholtz Center for Information Security), Sooel Son (KAIST)

Read More

Brokenwire: Wireless Disruption of CCS Electric Vehicle Charging

Sebastian Köhler (University of Oxford), Richard Baker (University of Oxford), Martin Strohmeier (armasuisse Science + Technology), Ivan Martinovic (University of Oxford)

Read More

Understanding MPU Usage in Microcontroller-based Systems in the Wild

Wei Zhou, Zhouqi Jiang (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Le Guan (School of Computing, University of Georgia)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More