Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Fuzzing has contributed to automatically identifying bugs and vulnerabilities in the software testing field. Although it can efficiently generate crashing inputs, these inputs are usually analyzed manually. Several root cause analysis (RCA) techniques have been proposed to automatically analyze the root causes of crashes to mitigate this cost. However, outstanding challenges for realizing more elaborate RCA techniques remain unknown owing to the lack of extensive evaluation methods over existing techniques. With this problem in mind, we developed an end-to-end benchmarking platform, RCABench, that can evaluate RCA techniques for various targeted programs in a detailed and comprehensive manner. Our experiments with RCABench indicated that the evaluations in previous studies were not enough to fully support their claims. Moreover, this platform can be leveraged to evaluate emerging RCA techniques by comparing them with existing techniques.

View More Papers

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More

Faster Secure Comparisons with Offline Phase for Efficient Private...

Florian Kerschbaum (University of Waterloo), Erik-Oliver Blass (Airbus), Rasoul Akhavan Mahdavi (University of Waterloo)

Read More

Understanding the Ethical Frameworks of Internet Measurement Studies

Eric Pauley and Patrick McDaniel (University of Wisconsin–Madison)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More