Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Reverse engineering unknown binaries is a difficult, resource intensive process due to information loss and optimizations performed by compilers that introduce significant binary diversity. Existing binary similarity approaches do not scale or are inaccurate. In this paper, we introduce IOVec Function Identification (IOVFI), which assesses similarity based on program state transformations, which compilers largely guarantee even across compilation environments and architectures. IOVFI executes functions with initial predetermined program states, measures the resulting program state changes, and uses the sets of input and output state vectors as unique semantic fingerprints. Since IOVFI relies on state vectors, and not code measurements, it withstands broad changes in compilers and optimizations used to generate a binary.

Evaluating our IOVFI implementation as a semantic function identifier for coreutils-8.32, we achieve a high .773 average F-Score, indicating high precision and recall. When identifying functions generated from differing compilation environments, IOVFI achieves a 100% accuracy improvement over BinDiff 6, outperforms asm2vec in cross-compilation environment accuracy, and, when compared to dynamic frameworks, BLEX and IMF-SIM, IOVFI is 25%–53% more accurate.

View More Papers

Private Certifier Intersection

Bishakh Chandra Ghosh (Indian Institute of Technology Kharagpur), Sikhar Patranabis (IBM Research - India), Dhinakaran Vinayagamurthy (IBM Research - India), Venkatraman Ramakrishna (IBM Research - India), Krishnasuri Narayanam (IBM Research - India), Sandip Chakraborty (Indian Institute of Technology Kharagpur)

Read More

Analyzing the Patterns and Behavior of Users When Detecting...

Nick Ceccio, Naman Gupta, Majed Almansoori, Rahul Chatterjee (University of Wisconsin-Madison)

Read More

PISE: Protocol Inference using Symbolic Execution and Automata Learning

Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

Read More

B2R2: Building an Efficient Front-End for Binary Analysis

Minkyu Jung (KAIST), Soomin Kim (KAIST), HyungSeok Han (KAIST), Jaeseung Choi (KAIST), Sang Kil Cha (KAIST)

Read More