Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Malware classification facilitates static analysis, which is manually intensive but necessary work to understand the inner workings of unknown malware. Machine learning based approaches have been actively studied and have great potential. However, their drawback is that their models are considered black boxes and are challenging to explain their classification results and thus cannot provide patterns specific to malware. To address this problem, we propose FCGAT, the first malware classification method that provides interpretable classification reasons based on program functions. FCGAT applies natural language processing techniques to create function features and updates them to reflect the calling relationships between functions. Then, it applies attention mechanism to create malware feature by emphasizing the functions that are important for classification with attention weights. FCGAT provides an importance ranking of functions based on attention weights as an explanation. We evaluate the performance of FCGAT on two datasets. The results show that the F1-Scores are 98.15% and 98.18%, which are competitive with the cutting-edge methods. Furthermore, we examine how much the functions emphasized by FCGAT contribute to the classification. Surprisingly, our result show that only top 6 (average per sample) highly-weighted functions yield as much as 70% accuracy. We also show that these functions reflect the characteristics of malware by analyzing them. FCGAT can provide analysts with reliable explanations using a small number of functions. These explanations could bring various benefits, such as improved efficiency in malware analysis and comprehensive malware trend analysis.

View More Papers

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More