Luca Massarelli (Sapienza University of Rome), Giuseppe A. Di Luna (CINI - National Laboratory of Cybersecurity), Fabio Petroni (Independent Researcher), Leonardo Querzoni (Sapienza University of Rome), Roberto Baldoni (Italian Presidency of Ministry Council)

In this paper we investigate the use of graph embedding networks, with unsupervised features learning, as neural architecture to learn over binary functions.

We propose several ways of automatically extract features from the control flow graph (CFG) and we use the structure2vec graph embedding techniques to translate a CFG to a vectors of real numbers. We train and test our proposed architectures on two different binary analysis tasks: binary similarity, and, compiler provenance. We show that the unsupervised extraction of features improves the accuracy on the above tasks, when compared with embedding vectors obtained from a CFG annotated with manually engineered features (i.e., ACFG proposed in [39]).

We additionally compare the results of graph embedding networks based techniques with a recent architecture that do not make use of the structural information given by the CFG, and we observe similar performances. We formulate a possible explanation of this phenomenon and we conclude identifying important open challenges.

View More Papers

Efficient Normalized Reduction and Generation of Equivalent Multivariate Binary...

Arnau Gàmez-Montolio (City, University of London; Activision Research), Enric Florit (Universitat de Barcelona), Martin Brain (City, University of London), Jacob M. Howe (City, University of London)

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More

FitM: Binary-Only Coverage-GuidedFuzzing for Stateful Network Protocols

Dominik Maier, Otto Bittner, Marc Munier, Julian Beier (TU Berlin)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More