Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford)

Presenter: Frederick Rawlins

Satellites in Geostationary Orbit (GEO) provide a number of commercial, government, and military services around the world, offering everything from surveillance and monitoring to video calls and internet access. However a dramatic lowering of the cost-per-kilogram to space has led to a recent explosion in real and planned constellations in Low Earth Orbit (LEO) of smaller satellites.

These constellations are managed remotely and it is important to consider a scenario in which an attacker gains control over the constituent satellites. In this paper we aim to understand what damage this attacker could cause, using the satellites to generate interference.

To ground our analysis, we simulate a number of existing and planned LEO constellations against an example GEO constellation, and evaluate the relative effectiveness of each. Our model shows that with conservative power estimates, both current and planned constellations could disrupt GEO satellite services at every groundstation considered, albeit with effectiveness varying considerably between locations.

We analyse different patterns of interference, how they reflect the structures of the constellations creating them, and how effective they might be against a number of legitimate services. We find that real-time usage (e.g. calls, streaming) would be most affected, with 3 constellation designs able to generate thousands of outages of 30 seconds or longer over the course of the day across all groundstations.

View More Papers

Efficient Dynamic Proof of Retrievability for Cold Storage

Tung Le (Virginia Tech), Pengzhi Huang (Cornell University), Attila A. Yavuz (University of South Florida), Elaine Shi (CMU), Thang Hoang (Virginia Tech)

Read More

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More

BEAGLE: Forensics of Deep Learning Backdoor Attack for Better...

Siyuan Cheng (Purdue University), Guanhong Tao (Purdue University), Yingqi Liu (Purdue University), Shengwei An (Purdue University), Xiangzhe Xu (Purdue University), Shiwei Feng (Purdue University), Guangyu Shen (Purdue University), Kaiyuan Zhang (Purdue University), Qiuling Xu (Purdue University), Shiqing Ma (Rutgers University), Xiangyu Zhang (Purdue University)

Read More

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum)

Read More