Vik Vanderlinden, Wouter Joosen, Mathy Vanhoef (imec-DistriNet, KU Leuven)

Performing a remote timing attack typically entails the collection of many timing measurements in order to overcome noise due to network jitter. If an attacker can reduce the amount of jitter in their measurements, they can exploit timing leaks using fewer measurements. To reduce the amount of jitter, an attacker may use timing information that is made available by a server. In this paper, we exploit the use of the server-timing header, which was created for performance monitoring and in some cases exposes millisecond accurate information about server-side execution times. We show that the header is increasingly often used, with an uptick in adoption rates in recent months. The websites that use the header often host dynamic content of which the generation time can potentially leak sensitive information. Our new attack techniques, one of which collects the header timing values from an intermediate proxy, improve performance over standard attacks using roundtrip times. Experiments show that, overall, our new attacks (significantly) decrease the number of samples required to exploit timing leaks. The attack is especially effective against geographically distant servers.

View More Papers

Cloud-Hosted Security Operations Center (SOC)

Drew Walsh, Kevin Conklin (Deloitte)

Read More

Hope of Delivery: Extracting User Locations From Mobile Instant...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

Paralyzing Drones via EMI Signal Injection on Sensory Communication...

Joonha Jang (KAIST), ManGi Cho (KAIST), Jaehoon Kim (KAIST), Dongkwan Kim (Samsung SDS), Yongdae Kim (KAIST)

Read More