Chloe Fortuna (STR), JT Paasch (STR), Sam Lasser (Draper), Philip Zucker (Draper), Chris Casinghino (Jane Street), Cody Roux (AWS)

Modifying a binary program without access to the original source code is an error-prone task. In many cases, the modified binary must be tested or otherwise validated to ensure that the change had its intended effect and no others—a process that can be labor-intensive. This paper presents CBAT, an automated tool for verifying the correctness of binary transformations. CBAT’s approach to this task is based on a differential program analysis that checks a relative correctness property over the original and modified versions of a function. CBAT applies this analysis to the binary domain by implementing it as an extension to the BAP binary analysis toolkit. We highlight several features of CBAT that contribute to the tool’s efficiency and to the interpretability of its output. We evaluate CBAT’s performance by using the tool to verify modifications to three collections of functions taken from real-world binaries.

View More Papers

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More

Securing Automotive Software Supply Chains (Long)

Marina Moore, Aditya Sirish A Yelgundhalli (New York University), Justin Cappos (NYU)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

Attributions for ML-based ICS Anomaly Detection: From Theory to...

Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More